Newsletter
A propos
Nouveautés
Vendez vos livres
Panier
Contact
Le blog
Catégories
Catégories
Sciences
Astronomie
Chimie
Mathématiques
Physique
Sciences naturelles
Techniques
Histoire des sciences
Médecine
Médecine
Pharmacie
Esotérisme
Astrologie
Alchimie
Sciences occultes
Sciences sociales
Economie
Histoire
Philosophie
Droit
Théologie
Arts & Architecture
Art & Livres d'artistes
Architecture
Littérature
Varia
Manuscrits
Reliures
Incunables et XVIème
FRAIS DE PORT GRATUITS EN COLISSIMO
NOUS ACCEPTONS
Mathématiques
Résultats (151 - 180) sur
197
<
4
5
6
7
>
Récent
Prix ↓
Prix ↑
Auteur A-Z
Auteur Z-A
Titre A-Z
Titre Z-A
Date ↑
Date ↓
REID, Thomas.
Recherches sur l'entendement humain, d'après les principes du sens commun.
Amsterdam, Jean Meyer, 1768.
Fiche complète >
400 €
Première édition française.
Thomas Reid est un philosophe écossais.
Dans cet ouvrage il prône le réalisme basé sur les cinq sens et s'oppose ainsi au système des idées, né avec la philosophie de Descartes.
Le chapitre sur la vue donne lieu à de longs développements sur l’optique. Dans la section IX, il définit la géométrie des visibles qui est une géométrie non euclidienne dans laquelle chaque cercle d'une sphère sera vu comme une droite.
DE LA GOURNERIE, Jules.
Recherches sur les surfaces réglées tétraédrales symétriques.
Paris, Gauthier-Villars, 1867.
Fiche complète >
300 €
Edition originale, avec des notes par Arthur Cayley
Jules de la Gournerie (1814-1883) ingénieur des ponts et chaussés et mathématicien, fut professeur à l'Ecole Polytechnique puis au conservatoire des arts et métiers où il tiendra la chaire de géométrie descriptive.
Il devient président de la Société mathématique de France en 1876.
Ouvrage qui contient la matière de trois mémoires soumis à l'académie des Sciences en 1865 et 1866. Chasles en avait fait un compte rendu élogieux.
Cayley, fort intéressé par ces travaux communiqua à Jules de La Gourmerie quelques unes de ses réflexions sur le sujet, en particulier des équations "très élégantes" sur deux surfaces qu'à fait connaître de La Gournmerie.
Le tout a été intégré dans cet ouvrage.
DULONG, Pierre || PETIT, Alexis.
Recherches sur quelques points importans de la théorie de la chaleur (publiés dans Annales de Chimie et de physique - Tome X).
Paris, Crochard, 1819.
Fiche complète >
650 €
Edition originale.
Recherche de première importance dans lequel les auteurs mesurent expérimentalement les chaleurs spécifiques de nombreux composés ce qui leur permettre de déduire ce qui deviendra la loi de Dulong et Petit qui lie masse molaire et capacité calorifique et la constante des gaz parfaits.
Dans le même volume une autre publication scientifique d'importance : Fresnel, Mémoire sur l'action que les rayons de lumière polarisés exercent les uns sur les autres. Travail majeur de Fresnel.
Et l'article de Fourier (p. 177-189) "Extrait d'un Mémoire sur la théorie analytique des assurances", lu à l'Académie des Sciences le 18 janvier 1819.
"On s'est proposé d'examiner, dans ce Mémoire, les conditions mathématiques de l'assurance mutuelle, c'est à dire, de cette association qui consiste à supporter en commun les pertes fortuites, au moyen d'une répartition proportionnelle de ces pertes entre tous les propriétaires."
Travail inédit de Fourier sur les assurances qui ne sera pas réédité dans les Oeuvres compilées par Darboux à la fin du XIXème siècle, c'est donc cette publication dans les annales qui reste la référence sur le sujet.
"Pour lever le paradoxe des assurances, Fourier, suivant Daniel Bernoulli et Laplace, utilise la notion d’espérance morale appliquée à une fonction d’utilité("l’avantage"), concave quelconque". (Bru et Benaymé in. rhm (3) 1997, p.137-139).
On trouve également des articles de Breguet (précision d'un chronomètre à tourbillon et outil de mesure astronomique la planche illustrant cette invention est manquante), Pelletier (découverte de la strychnine).
LEURECHON, Jean.
Récréation mathématicque composée de plusieurs problèmes plaisants et facétieux en faict d'Arithméticque, Géometrie, Méchanicque, Opticque, et autres parties de ces belles sciences.
Lyon, Claude Rigaud & Claude Obert, 1627.
Fiche complète >
1450 €
Première édition lyonnaise très rare de cet ouvrage de physique amusante qui fut publié pour la première fois à Pont-à-Mousson en 1624 et maintes fois réédité.
OZANAM, Jacques.
Récréations Mathématiques et Physiques, qui contiennent plusieurs Problêmes d'Arithmétique, de Géometrie, d'Optique, de Gnomonique, de Cosmographie, de Méchanique, de Pyrotechnique, & de Physique. Avec un Traité nouveau des Horloges Elémentaires.
Paris, Jean Jombert, 1694.
Fiche complète >
2000 €
Édition originale rare.
C'est le premier ouvrage portant sur les mathématiques et la physique amusante.
On y trouve de nombreux problèmes à résoudre, d'expériences d'arithmétique, de géométrie, de gnomonique, de cosmographie, de mécanique, de pyrotechnie et de physique.
In fine se trouve le traité des horloges, d'après les travaux de Martinelli où sont décrits différents types d'horloges : de la manière de faire des horloges avec de l'eau, du sable, de l'air ou encore du feu.
Bon exemplaire de cet ouvrage recherché.
OZANAM, Jacques.
Récréations mathématiques et physiques, qui contiennent plusieurs problèmes d'arithmétique, de géométrie, de musique, d'optique, de gnomonique, de cosmographie, de mécanique, de pyrotechnie, & de physique. Avec un traité des horloges élémentaires.
Paris, Claude Jombert, 1723.
Fiche complète >
900 €
Nouvelle édition, revue, corrigée et augmentée depuis la première parue en 1694 (qui était en deux volumes et 84 planches).
Edition importante, la première avec 136 planches qui seront ensuite reprise dans les éditions postérieures.
Cet ouvrage portant sur les mathématiques et la physique amusante est recherché des amateurs. Il traite de divers problèmes en Arithmétique, géométrie, musique, optique, gnomonique, cosmographie, mécanique, acoustique, pyrotechnie, physique, horloges d'eau, phosphores naturels, lampes perpétuelles, etc.
FRENET, Frédéric.
Recueil d'exercices sur le calcul infinitésimal : Ouvrage destiné aux candidats à l'école polytechnique et à l'école normale, aux élèves de ces écoles, et aux personnes qui se préparent à la licence ès sciences mathématiques.
Paris, Mallet-Bachelier, 1856.
Fiche complète >
95 €
Édition originale assez rare.
GROLLIER DE SERVIÈRE, Gaspard.
Recueil d'ouvrages curieux de mathématique et de mécanique, ou description du cabinet de Monsieur Grollier de Servière avec des figures en taille douce.
Lyon, David Forey, 1719.
Fiche complète >
2200 €
Édition originale de l’un des ouvrages de mécanique de référence.
Nicolas Grollier de Servières (1593-1686), ingénieur et officier de carrière ayant été commandant à Pignerol, petit-neveu du bibliophile Jean Grolier, se retira à Lyon et s'y constitua un cabinet de curiosité entièrement consacré à la mécanique : horloges, tours, machines militaires et civiles pour la défense et l'attaque des places, la construction des maisons, des ponts, la locomotion des bateaux, etc. Louis XIV prit la peine de s'y arrêter de passage à Lyon, et le petit-fils du collectionneur Gaspard en dressa le présent catalogue.
Bon exemplaire dans une reliure aux armes du collège des Jésuites de Lyon.
[POLYTECHNIQUE] CHAUVISE, Jules Thimotée.
Recueils d'Epures.
s.l., s.n., 1837-1839.
Fiche complète >
650 €
Recueil d'épures par Jules Thimothé Chauvisé (X 1837 ; 1817-????).
La structure de ces épures enseignées à l'Ecole Polytechnique est souvent la même, avec des parties plus ou moins développées, et des dessins plus ou moins élaborés en fonction des époques et des élèves.
On y trouve ainsi des épures de courbes, surfaces, perspectives, ombres, coupe de pierre, architecture, machine et engrenages, topographies et fortifications.
CARNOT, Lazare.
Réflexions sur la métaphysique du calcul infinitésimal.
Paris, Duprat, 1797.
Fiche complète >
850 €
Rare édition originale, bien complète de la planche dépliante.
CAUCHY, Augustin Louis.
Résumés analytiques.
Turin, Imprimerie royale, 1833.
Fiche complète >
1500 €
Edition originale.
Publication de Cauchy alors qu'il est en exil à Turin, son opposition à la monarchie de juillet lui ayant en effet fermé l'accès aux postes d'enseignement en France.
Il résume ici ses cours d'analyse algébrique.
"J'ai pensé qu'une série d'articles destinés à offrir le résumé des théories les plus importantes de l'analyse, soit anciennes soit nouvelles, particulièrement des théories qu'embrasse l'analyse algébrique, et des méthodes qui en rendent l'exposition plus facile, pourrait intéresser les géomètres et ceux qui s'adonnent à la culture des sciences." Extrait de l'Avertissement.
FONTES, Joseph.
Réunion de 4 plaquettes sur l'arithmétique et la division.
Toulouse, s.n., [1892-1893].
Fiche complète >
150 €
Editions originales.
Réunion de 4 plaquettes sur l'arithmétique et la division :
- Bilan des caractères de divisibilité, 1893. 19 pages. Dédicace de l'auteur
- Note sur la division, 3 pages.
- Sur la division arithmétique possibilité de la suppression de cette opération, 8 pages. Dédicace de l'auteur
- Sur le Raccordement Bi-circulaire de deux droites d'un même plan et en particulier sur une anse de panier à 3 centres, 11 pages.
Joseph Fontès était ingénieur en chef des ponts et chaussées à Toulouse à la fin du XIXème siècle.
WRONSKI, Hoëné.
Sept manuscrits inédits, écrits de 1803 à 1806.
Paris, A dépot des ouvrages de l'auteur, 1879.
Fiche complète >
Vendu
L'oeuvre de Wronski, mathématicien, philosophe et mystique est difficile à aborder.
Sa philosophie, influencée par les travaux de Kant, est au coeur de ses travaux scientifiques.
Sa personnalité troublée et de nombreuses erreurs dans ses écrits ont fait rejeter l'ensemble de son oeuvre, mais une relecture de ses travaux a permis de voir que Wronski était en fait un mathématicien doué, capable de développer des concepts importants.
On a ainsi donné son nom (wronskien) au déterminant d'une famille de solutions d'un système différentiel linéaire homogène y' = ay.
Il travailla aussi beaucoup sur les déterminants et mit au point une méthode permettant, pour tout polynôme, d'extraire le polynôme dont toutes les racines sont à l'intérieur du disque unité, méthode connue sous le nom de méthode de Wronski.
Édition originale fort rare et posthume de sept manuscrits inédits de Wronski sur la Philosophie spéculative, la Philosophie du langage, la Philosophie ou législation des mathématiques, le Système général des probabilités, l'Economie politique, un Cours de géographie, et sur le Platine.
LEBESGUE, Henri.
Sur la mesure des grandeurs.
Paris, Gauthier-Villars, 1956.
Fiche complète >
Vendu
Deuxième édition.
Henri Lebesgue (1875-1941), est l'un des grands mathématiciens français de la première moitié du vingtième siècle. Il est reconnu pour sa théorie d'intégration et pour sa théorie de la mesure, laquelle prolonge les premiers travaux importants d'Émile Borel.
Compilation des articles de Lebesgue parus dans l'Enseignement mathématique de 1931 à 1935.
POINCARE, Henri.
Sur les Rapports de la physique expérimentale et de la physique mathématique.
Paris, Gauthier-Villars, 1900.
Fiche complète >
600 €
Edition originale.
Tiré à part cet intéressant article d’épistémologie d'Henri Poincaré dans lequel il analyse les rapports entre les lois mathématiques de la physique et les données de l'expérience : A quel moment doit on donner raison à l'une et tort à l'autre ?
Dans ce rapport qui fut présenté au Congrès international de Physique en 1900, Poincaré y discute notamment à la fin du texte des équations de Lorentz qui permettent d'analyser certains fait physiques mais pas tous, ce qui sera tranché par Einstein quelques années plus tard avec sa théorie de la relativité restreinte.
Ce débat est d'ailleurs toujours un enjeu pour la physique moderne à propos de la matière noire, faut il changer les théories physiques ou améliorer nos capacités de mesures ?.
BIERENS DE HAAN, David.
Tables d'intégrales définies et Supplément aux tables d'intégrales définies qui forment le tome IV des mémoires de l'académie.
[Amsterdam], C. G. van der Post, 1858.
Fiche complète >
450 €
David Bierens de Haan est un mathématicien hollandais et un historien des mathématiques.
Il possédait une vaste bibliothèque de mathématiques, d'histoire des sciences et d'enseignement qui fait désormais partie de la Bibliothèque de l'université de Leyde.
Ses tables d'intégrales définies sont sa contribution la plus importante aux mathématiques.
LAGRANGE, Joseph Louis.
Théorie des fonctions analytiques, contenant les principes du calcul différentiel, dégagés de toute considération d'infiniment petits ou d'évanouissans, de limites ou de fluxions et réduits à l'analyse algébrique des quantités finies.
Paris, Imprimerie de la République, An V [1797].
Fiche complète >
1200 €
Édition originale, variante A.
Les bibliographies mentionnent plusieurs tirages de cet ouvrage, un tirage à 277 pages (variante B chez Norman) et le nôtre à 276 pages (variante A).
Ce traité est issu de l’enseignement de Lagrange à l’École Polytechnique.
Dans ce traité, Lagrange entend manipuler les fonctions par leur seul développement en séries entières selon des méthodes qu’il qualifie de purement algébriques. La formule de Taylor apparaît alors comme le fondement de l’Analyse.
Exemplaire de prix remis, en 1806, au Collège Sainte Barbe (le monogramme du collège sur les plats) par Gaspard Monge, à François de Sales Desnoyers (1788-1846). François Desnoyers intègrera Polytechnique en 1809, il servira lors des campagnes napoléoniennes et perdra un bras à Leipzig en 1814. En 1826, il devient Administrateur à l'École Polytechnique.
MARIE, Maximilien.
Théorie des fonctions de variables imaginaires.
Paris, Gauthier-Villars, [1874-1876].
Fiche complète >
200 €
Edition originale.
Maximilien Marie (1819-1891), polytechnicien (X 1838) puis répétiteur et examinateur à l'Ecole Polytechnique.
TI : Nouvelle géométrie analytique
TII: Application de la méthode à la théorie générale des fonctions
TIII : Histoire de cet ouvrage.
Le troisième tome est particulièrement insolite à cette époque, il se livre à une autobiographie scientifique dans laquelle on peut voir le cheminement de sa pensée et la construction se théorie mathématique.
Envoi autographe de l'auteur à Eugène Rolland (X 1830) l’inventeur du torréfacteur, sur le titre du tome I et la page de faux titre du tome II.
on joint :
MARIE, Nouvelle théorie des fonctions de variables imaginaires, Paris, Mallet-Bachelier, [v. 1862]
(4)-28 pages. in-8 broché, couverture fendu au dos.
Extrait de l'article sur les fonctions de variables imaginaires paru dans le "Journal de Mathématiques pures et appliquées publié par M. Liouville" qui est un travail précurseur de ceux publiés dans l'ouvrage précédent.
DORMOY, Emile.
Théorie Mathématique des assurances sur la vie.
Paris, Gauthier-Villars, 1878.
Fiche complète >
450 €
Edition originale.
Emile Dormoy, ingénieur de Polytechnique et des mines dirigera la compagnie d'assurance Soleil-Vie. Il nous laisse cet important traité de mathématiques à l'usage des actuaires dans lequel il consacre notamment un chapitre à la Théorie des écarts. Il y décrit avant Wilhelm Lexis ce qui sera connu sous le nom de "Ratio de Lexis" (aujourd'hui remplacé par le test du Khi 2).
Il s’agit de rendre compte des variations enregistrées lorsqu’en examinant N échantillons de n événements on observe la proportion des apparitions d’un certain caractère ou événement.
La loi des écarts développée ensuite par Bachelier sera l'une des bases des mathématiques financières.
CORIOLIS, Gustave Gaspard.
Théorie mathématique des effets du jeu de Billard.
Paris, Carilian-Goeury, 1835.
Fiche complète >
1200 €
Edition originale du premier ouvrage étudiant scientifiquement les mouvement des billes de billard.
Coriolis a consacré son énergie à travailler sur les lois de la mécanique. On lui doit le terme "d'énergie cinétique" et il a laissé son nom à la force de Coriolis qui est issue de ses travaux sur l'étude des forces s'appliquant à un corps en rotation et en mouvement.
BOREL, Emile || CHERON, André.
Théorie mathématique du Bridge à la portée de tous.
Paris, Gauthier-Villars, 1940.
Fiche complète >
100 €
Edition originale
Application des probabilités à la pratique du jeu de Bridge avec 134 tableaux de probabilités avec leurs modes d'emploi.
Emile BOREL (1871-1956) mathématicien français, professeur à la Faculté des sciences de Paris. Il était spécialiste de la théorie des fonctions et des probabilités. Il fonde en 1922 l'Institut de statistique de l'université de Paris et en 1928 L'Institut Henri-Poincaré.
L’HOSPITAL, Guillaume (Marquis de).
Traité analytique des sections coniques et de leur usage pour la résolution des équations dans les problèmes tant déterminez qu’indéterminez.
Paris, Jean Boudot, 1707.
Fiche complète >
1200 €
Edition originale.
Traité sur les sections coniques, qu'il traite tant par des méthodes géométriques et analytiques (équations de la forme ax2 + bx2 + cxy + dx + ey + f = 0) et qui connut un grand succès.
Finalisé en 1699, il ne fut publié qu'après sa mort à la demande de Fontenelle alors secrétaire de l'Académie Royale.
L’HOSPITAL, Guillaume (Marquis de).
Traité analytique des sections coniques et de leur usage pour la résolution des équations dans les problèmes tant déterminez qu’indéterminez.
Paris, Montalant, 1720.
Fiche complète >
200 €
Seconde édition.
Traité sur les sections coniques, qu'il traite tant par des méthodes géométriques et analytiques (équations de la forme ax2 + bx2 + cxy + dx + ey + f = 0) et qui connut un grand succès.
Finalisé en 1699, il ne fut publié qu'après sa mort à la demande de Fontenelle alors secrétaire de l'Académie Royale.
ROLLE, Michel.
Traité d'Algèbre ou principes généraux pour résoudre les questions de mathématique.
Paris, Estienne Michalet, 1690 [MDCLXC].
Fiche complète >
1500 €
Édition originale.
Le traité d'algèbre est l'ouvrage le plus important de Rolle.
Il y invente la notation n√x pour la racine nième de x, qui est encore utilisée aujourd'hui.
Son apport le plus important reste cependant la partie où il introduit la notion de "cascades".
Soit l'équation polynomiale P(x)=0 avec des racines réelles a et b, il construit alors le polynôme P'(x) qu'il appelle "première cascade" tel que P'(a)=(b-a) Q(b) où Q(x) est un polynôme de degré inférieur. P'(x) est la première dérivée de P(x).
Rolle construit alors la deuxième cascade qui est la dérivée seconde et ainsi de suite permettant de trouver toutes les racines du polynôme.
D'après nos recherches, il y a eu plusieurs modifications en cours de tirage du traité d'algèbre dont l'étude reste à faire.
Un tirage avec la date erronée (MDCLXC) comme sur notre exemplaire, ensuite corrigé (M.DC.XC).
Notre exemplaire possède le rare épitre à M. Louvois de deux feuillets qui n'a été ajouté qu'à certains exemplaires.
Un tirage avec les feuillets FF et FFii (pages 223 à 226) remplacés comme dans notre exemplaire par un seul feuillet Ff (paginé par erreur 267/266).
Notre exemplaire est donc après l'ajout du carton FF, mais avant la modification de la date erronée.
JOURDANET, Jean-Pierre.
Traité d'Arithmétique destiné aux élèves de l'enseignement secondaire classique et moderne, de l'enseignement primaire supérieur, des écoles normales d'instituteurs.
Paris, A. Hermann, 1892.
Fiche complète >
50 €
Edition originale.
BERTRAND, Joseph.
Traité de calcul différentiel et de calcul intégral.
Paris, Gauthier-Villars, 1864-1870.
Fiche complète >
Vendu
Édition originale.
Le mathématicien Joseph Bertrand, a publié de nombreux travaux en théorie des nombres et en théorie des groupes, et est devenu en 1862 professeur d'analyse au Collège de France.
Cet ouvrage deviendra la référence sur le sujet à l'époque.
Il déclare dans la Préface de cet ouvrage, que « la découverte du calcul infinitésimal a été pour la science mathématique le plus grand progrès qu'elle ait jamais fait ».
Bertrand décrit ensuite avec quelques détails l'histoire de ce domaine mathématique et en particulier les apports respectifs de Newton et de Leibnitz, qu'il présente de façon non partisane avant de traiter en détail du calcul différentiel puis du calcul intégral.
CHASLES, Michel.
Traité de géométrie supérieure.
Paris, Gauthier-Villars, 1880.
Fiche complète >
Vendu
Seconde édition.
Ouvrage majeur du célèbre mathématicien Chasles.
"La Géométrie supérieure, lors de sa publication, était nouvelle, à bien des égards pour les matières, et principalement pour les méthodes de démonstration qui, grâce à l'emploi des signes et à l'introduction des imaginaires, participent aux avantages de l'Analyse. Ces méthodes se distinguent par ce caractère spécial que les quantités susceptibles de devenir imaginaires n'y entrent pas sous forme explicite, mais s'y trouvent représentées par des éléments réels, de même qu'en Analyse les racines d'une équation sont représentées collectivement par les coefficients de cette équation. L'ouvrage contient les théories du rapport anharmonique, de l'involution, des figures homographiques ou corrélatives ainsi que leurs applications aux polygones et aux cercles. Il se termine par deux chapitres intéressants : l'un concerne certaines propriétés de deux cercles conduisant à d'élégantes représentations des équations relatives aux fonctions elliptiques; l'autre a pour objet la théorie des cônes à base circulaire et des coniques sphériques, à laquelle Chasles avait, dès 1830, consacré deux contributions remarquables dans le Tome VI des Mémoires de l'Académie de Bruxelles." Eugène Rouchê.
BULLET, Pierre.
Traité de l'usage du pantomètre, instrument géométrique, instrument géométrique propre à prendre toutes sortes d'angles, mesurer les distances accessibles et inaccessibles, arpenter et diviser toutes sortes de figures.
Paris, André Pralard, 1675.
Fiche complète >
450 €
Édition originale.
Exemplaire bien complet de cet ouvrage dans lequel Bullet présente et décrit l'usage du Pantomètre, un instrument d'arpentage servant à mesurer les angles et à mener les perpendiculaires sur le terrain.
BION, Nicolas.
Traité de la construction et des principaux usages des instrumens de mathématique.
Paris, Brunet, Ganeau, Robustel & Osmont, 1725.
Fiche complète >
900 €
Bion était un célèbre fabricant d'intruments (globes, cadrans solaires, astrolabes, ...). Ingénieur du roi, sa boutique était installée quai de l'horloge à Paris.
Dans le "traité de la construction..", il décrit une liste complète des instruments qu'il pouvait proposer (astrolabes, lunettes astronomiques, microscopes, compas, ...).
Bon exemplaire de la troisième édition, revue et augmentée par l'auteur. La première complète d'un frontispice et des 37 planches dépliantes (la première édition de 1709 n'en contenait que 28 et la seconde de 1723, 30).
LAMY, Bernard.
Traité de la grandeur en général qui comprend l'arithmétique, l'algèbre, l'analyse et les principes de toutes les sciences qui ont la grandeur pour objet.
Paris, André Pralard, 1680.
Fiche complète >
400 €
Edition originale.
Exemplaire bien complet de sa planche.
Résultats (151 - 180) sur
197
<
4
5
6
7
>
Récent
Prix ↓
Prix ↑
Auteur A-Z
Auteur Z-A
Titre A-Z
Titre Z-A
Date ↑
Date ↓
A propos
Vendez vos livres
Contact
Newsletter
Blog
52 rue des Ecoles 75005 Paris
tel. 01 43 54 22 23
contact@livresanciens.com
Conditions générales de vente
TVA intracommunautaire : FR87515091171
© Librairie Eric Zink Livres Anciens